Exercise 7

Show that if c is any nth root of unity other than unity itself, then

$$
1+c+c^{2}+\cdots+c^{n-1}=0
$$

Suggestion: Use the first identity in Exercise 9, Sec. 9.

Solution

The first identity in Exercise 9 of Sec. 9 is

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z} \quad(z \neq 1)
$$

Suppose that c is any nth root of unity other than unity itself.

$$
c^{n}=1, \quad(c \neq 1)
$$

This root satisfies the previous identity.

$$
1+c+c^{2}+\cdots+c^{n-1}+c^{n}=\frac{1-c^{n+1}}{1-c}
$$

Subtract c^{n} from both sides.

$$
\begin{aligned}
1+c+c^{2}+\cdots+c^{n-1} & =\frac{1-c^{n+1}}{1-c}-c^{n} \\
& =\frac{1-c^{n+1}-c^{n}(1-c)}{1-c} \\
& =\frac{1-c^{n+1}-c^{n}+c^{n+1}}{1-c} \\
& =\frac{1-c^{n}}{1-c} \\
& =\frac{1-1}{1-c} \\
& =0
\end{aligned}
$$

